192 research outputs found

    Efficient Hill Climber for Multi-Objective Pseudo-Boolean Optimization

    Get PDF
    Chicano, F., Whitley D., & Tinós R. (2016). Efficient Hill Climber for Multi-Objective Pseudo-Boolean Optimization. 16th European Conference on Evolutionary Computation for Combinatorial Optimization (LNCS 9595), pp. 88-103Local search algorithms and iterated local search algorithms are a basic technique. Local search can be a stand-alone search method, but it can also be hybridized with evolutionary algorithms. Recently, it has been shown that it is possible to identify improving moves in Hamming neighborhoods for k-bounded pseudo-Boolean optimization problems in constant time. This means that local search does not need to enumerate neighborhoods to find improving moves. It also means that evolutionary algorithms do not need to use random mutation as a operator, except perhaps as a way to escape local optima. In this paper, we show how improving moves can be identified in constant time for multiobjective problems that are expressed as k-bounded pseudo-Boolean functions. In particular, multiobjective forms of NK Landscapes and Mk Landscapes are considered.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Fulbright program, Ministerio de Educación (CAS12/00274), Ministerio de Economía y Competitividad (TIN2014-57341-R), Air Force Office of Scientific Research, Air Force Materiel Command, USAF (FA9550-11-1-0088), FAPESP (2015/06462-1) and CNPq

    Efficient Hill Climber for Constrained Pseudo-Boolean Optimization Problems

    Get PDF
    Efficient hill climbers have been recently proposed for single- and multi-objective pseudo-Boolean optimization problems. For kk-bounded pseudo-Boolean functions where each variable appears in at most a constant number of subfunctions, it has been theoretically proven that the neighborhood of a solution can be explored in constant time. These hill climbers, combined with a high-level exploration strategy, have shown to improve state of the art methods in experimental studies and open the door to the so-called Gray Box Optimization, where part, but not all, of the details of the objective functions are used to better explore the search space. One important limitation of all the previous proposals is that they can only be applied to unconstrained pseudo-Boolean optimization problems. In this work, we address the constrained case for multi-objective kk-bounded pseudo-Boolean optimization problems. We find that adding constraints to the pseudo-Boolean problem has a linear computational cost in the hill climber.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Genetic Algorithms and Local Search

    Get PDF
    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem

    Optimizing One Million Variable NK Landscapes by Hybridizing Deterministic Recombination and Local Search

    Get PDF
    In gray-box optimization, the search algorithms have access to the variable interaction graph (VIG) of the optimization problem. For Mk Landscapes (and NK Landscapes) we can use the VIG to identify an improving solution in the Hamming neighborhood in constant time. In addition, using the VIG, deterministic Partition Crossover is able to explore an exponential number of solutions in a time that is linear in the size of the problem. Both methods have been used in isolation in previous search algorithms. We present two new gray-box algorithms that combine Partition Crossover with highly efficient local search. The best algorithms are able to locate the global optimum on Adjacent NK Landscape instances with one million variables. The algorithms are compared with a state-of-the-art algorithm for pseudo-Boolean optimization: Gray-Box Parameterless Population Pyramid. The results show that the best algorithm is always one combining Partition Crossover and highly efficient local search. But the results also illustrate that the best optimizer differs on Adjacent and Random NK Landscapes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Enhancing partition crossover with articulation points analysis

    Get PDF
    Partition Crossover is a recombination operator for pseudo-Boolean optimization with the ability to explore an exponential number of solutions in linear or square time. It decomposes the objective function as a sum of subfunctions, each one depending on a different set of variables. The decomposition makes it possible to select the best parent for each subfunction independently, and the operator provides the best out of 2q2^q solutions, where qq is the number of subfunctions in the decomposition. These subfunctions are defined over the connected components of the recombination graph: a subgraph of the objective function variable interaction graph containing only the differing variables in the two parents. In this paper, we advance further and propose a new way to increase the number of linearly independent subfunctions by analyzing the articulation points of the recombination graph. These points correspond to variables that, once flipped, increase the number of connected components. The presence of a connected component with an articulation point increases the number of explored solutions by a factor of, at least, 4. We evaluate the new operator using Iterated Local Search combined with Partition Crossover to solve NK Landscapes and MAX-SAT.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Funding was provided by the Fulbright program, the Spanish Ministry of Education, Culture and Sport (CAS12/00274), the Spanish Ministry of Economy and Competitiveness and FEDER (TIN2014-57341-R and TIN2017-88213-R), the Air Force Office of Scientific Research, (FA9550-11-1-0088), the Leverhulme Trust (RPG-2015-395), the FAPESP (2015/06462-1) and CNPq (304400/2014-9)

    Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem

    Get PDF
    There exist local search landscapes where the evaluation function is an eigenfunction of the graph Laplacian that corresponds to the neighborhood structure of the search space. Problems that dis- play this structure are called “Elementary Landscapes” and they have a number of special mathematical properties. The problems that are not elementary landscapes can be decomposed in a sum of elementary ones. This sum is called the elementary landscape decomposition of the problem. In this paper, we provide the elementary landscape decomposi- tion for the Hamiltonian Path Optimization Problem under two different neighborhoods.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Randomly Initialized Subnetworks with Iterative Weight Recycling

    Full text link
    The Multi-Prize Lottery Ticket Hypothesis posits that randomly initialized neural networks contain several subnetworks that achieve comparable accuracy to fully trained models of the same architecture. However, current methods require that the network is sufficiently overparameterized. In this work, we propose a modification to two state-of-the-art algorithms (Edge-Popup and Biprop) that finds high-accuracy subnetworks with no additional storage cost or scaling. The algorithm, Iterative Weight Recycling, identifies subsets of important weights within a randomly initialized network for intra-layer reuse. Empirically we show improvements on smaller network architectures and higher prune rates, finding that model sparsity can be increased through the "recycling" of existing weights. In addition to Iterative Weight Recycling, we complement the Multi-Prize Lottery Ticket Hypothesis with a reciprocal finding: high-accuracy, randomly initialized subnetwork's produce diverse masks, despite being generated with the same hyperparameter's and pruning strategy. We explore the landscapes of these masks, which show high variability

    A Parallel Ensemble of Metaheuristic Solvers for the Traveling Salesman Problem

    Full text link
    The travelling salesman problem (TSP) is one of the well-studied NP-hard problems in the literature. The state-of-the art inexact TSP solvers are the Lin-Kernighan-Helsgaun (LKH) heuristic and Edge Assembly crossover (EAX). A recent study suggests that EAX with restart mechanisms perform well on a wide range of TSP instances. However, this study is limited to 2,000 city problems. We study for problems ranging from 2,000 to 85,900. We see that the performance of the solver varies with the type of the problem. However, combining these solvers in an ensemble setup, we are able to outperform the individual solver's performance. We see the ensemble setup as an efficient way to make use of the abundance of compute resources. In addition to EAX and LKH, we use several versions of the hybrid of EAX and Mixing Genetic Algorithm (MGA). A hybrid of MGA and EAX is known to solve some hard problems. We see that the ensemble of the hybrid version outperforms the state-of-the-art solvers on problems larger than 10,000 cities.Comment: First submission was made to Europar, 2021. Paper Rejecte

    Quasi-elementary Landscapes and Superpositions of Elementary Landscapes

    Get PDF
    Whitley, D., & Chicano F. (2012). Quasi-elementary Landscapes and Superpositions of Elementary Landscapes. (Hamadi, Y., & Schoenauer M., Ed.).Learning and Intelligent Optimization - 6th International Conference, LION 6, Paris, France, January 16-20, 2012, Revised Selected Papers. 277–291.There exist local search landscapes where the evaluation function is an eigenfunction of the graph Laplacian that corresponds to the neighborhood structure of the search space. Problems that display this structure are called “Elementary Landscapes” and they have a number of special mathematical properties. The term “Quasi-elementary landscapes” is introduced to describe landscapes that are “almost” elementary; in quasi-elementary landscapes there exists some efficiently computed “correction” that captures those parts of the neighborhood structure that deviate from the normal structure found in elementary landscapes. The “shift” operator, as well as the “3-opt” operator for the Traveling Salesman Problem landscapes induce quasi-elementary landscapes. A local search neighborhood for the Maximal Clique problem is also quasi-elementary. Finally, we show that landscapes which are a superposition of elementary landscapes can be quasi-elementary in structure.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant number FA9550-11-1-0088. Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project)
    corecore